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Simulation and Analytical Models of Flexible,
Robotic Automotive Assembly Line

Yi-Shiuan Tung, Michael Kelessoglou, Matthew Gombolay, and Julie Shah

Abstract—Seeking to adapt to a rapidly changing market,
the automotive industry is interested in flexible assembly lines
that can handle disruptions resulting from machine failures,
scheduling changes, or stochastic task times. In this paper, we
propose a layout for transporting cars that incorporates mobile
robotic platforms capable of moving off of the assembly line
when disruptions occur. We use discrete event simulation to
analyze the throughput of our flexible layout on a segment
of an automotive assembly line, with the results indicating
average speed improvements of 26% and 36% compared with a
conventional layout for a single band and two bands with a finite
buffer, respectively. In addition, we study the robustness of the
flexible layout in the presence of additional inefficiencies inherent
in the adoption of new technologies. Next, we present analytical
models for throughput analyses of both layouts. We improve upon
previous two-machine line analytical models by augmenting the
state space to model every machine in a band, and report that the
discrete models best approximate the throughput in most cases.

Note to Practitioners: Abstract—This paper was motivated by
the problem of slowdowns that occur on automotive assembly
lines due to machine breakdowns, logistical delays, or uneven
task times. Currently, cars typically move linearly along conveyor
belts or monorails that are fixed in position; we propose a
new layout that transports cars using mobile platforms able
to move to the side or onto a different track. We modeled
a segment of an automotive assembly line in simulation, and
show that our proposed layout yields significant improvements
to throughput. Upon the inclusion of additional disruptions into
the model in order to account for unforeseen problems that can
occur when implementing a new technology, the proposed layout
continued to outperform the conventional linear layout. We also
present analytical approaches for throughput analysis so that
future designs can be validated more quickly. Our methods are
applicable to analysis of other assembly designs that handle
a variety of products and can experience random disruptions
during operations. In future work, we plan to improve the
simulation’s fidelity and expand the analysis to longer assembly
lines.

Index Terms—Flexible assembly line, Discrete event simulation,
Throughput analysis

I. INTRODUCTION

RECENT challenges in the automotive industry include
frequent changes to customer demands, updates to as-

sembly technologies, and the introduction of new models and
materials. The traditional assembly line designed for mass
production cannot efficiently support a market that demands a
significant degree of product variety and customization. One
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ongoing issue is the need for an assembly line to respond
and adapt to market changes, product changes, and system
failures [1], all of which require a flexible production system
[2]. Previous work has identified several potential areas of
manufacturing flexibility with respect to the volume and
variety of products, as well as variety among processes used
for assembly and material handling [3]. In this work, we
present a new assembly line layout that addresses process
flexibility: the ability of the system to handle changes and
disruptions to the manufacturing process, including machine
failures, scheduling changes, or stochastic task times due to
mixed-model assembly.

The assembly process is divided into four stages: stamping,
body shop, painting, and final assembly (FA) [4]. Our proposed
layout uses mobile platforms to transport cars along a band
in the FA stage, where most variations in task times due to
customization occur. (For example, optional features, such as
navigation systems and moonroofs, are installed during the FA
stage.) In the conventional layout (CL), cars are transported
along a linear conveyor belt, and the band is divided into
workstations at which specific tasks are performed. When a car
requires more time at a particular station due to assembly dis-
ruptions, the entire band pauses until any issues are resolved,
resulting in undue idle time for workers. The proposed layout,
which we henceforth refer to as the flexible layout (FL), allows
a system the flexibility to move a car to different tracks or off
of the line altogether when disruptions occur. Figures 1 and 2
depict CL and FL, respectively.

The FL requires the following major changes from the CL:
1. equipment must be placed on mobile platforms, 2. logistics
must either be placed on or moved along the platforms
via autonomous systems such as automatic guided vehicles
(AGVs) [4], and 3. workers are required to perform multiple
different assembly tasks. While further research is required
for the design of these mobile platforms, we study how such a
layout would be able to mitigate disruptions along an assembly
line. The main contribution of this paper is the analysis of the
benefits of FL, assuming that such technology is available.

First, we use discrete event simulation to model both the CL
and FL for performance analysis. Using data collected from
an automotive plant, we simulate the manufacturing process
of a single band and two bands with a single finite buffer.
In order to address the potential for unforeseen inefficiencies
following the adoption of FL, we also provide an analysis of
FL performance when additional disruptions are added. Lastly,
because simulation has relatively long implementation time
and large computational costs, we present analytical models
and evaluate their throughput prediction by comparing them
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to the simulation’s throughput.
In Section II, we review related work in the fields of as-

sembly line technologies, simulation, and analytical models. In
Section III, we formulate the problem and list our assumptions.
In Section IV, we describe the simulation architecture and
present our findings. In Section V, we present the analytical
models for throughput prediction and evaluate the models by
comparing their results with the simulation throughput. We
summarize our findings and provide suggestions for future
work in Section VI and VII.

II. RELATED WORK

Early work assessing flexible manufacturing systems (FMS)
studied the implementation of machines capable of multiple
operations [5]; however, wide adoption of FMS is hindered
by high equipment cost and low throughput [1]. In addition,
FMS cannot scale quickly and thus do not respond well to
market or product changes.

The concept of reconfigurable manufacturing systems
(RMS) aims to solve scalability and responsiveness issues
via changeable structures [1]. Hybrid reconfigurable systems
combine RMS with human-centered design in order to better
realize the advantages of human-robot collaboration [6].

Mobile robotics represents a major advancement with regard
to system reconfigurability. For example, BMW’s Mobi-Cell
concept allows a robot cell (which includes 25-30 robots) to
be loaded onto a truck and put into production at a new plant
3 days later [7]. The Peugeot 307 body shop uses extra robots
that can automatically replace mainline robots that experience
technical issues [8].

More recently, mobile robots with reconfigurable end effec-
tors that can autonomously move along the factory floor have
been studied [9], [10]. Mobile robots can perform a variety
of functions and are able to move to different locations along
an assembly line to resolve issues or help finish tasks. This
approach is most similar to our proposed flexible layout, but
in our case, car parts are carried and tasks are performed on
mobile platforms. To the best of our knowledge, such a layout
has not yet been proposed or evaluated, either in simulation
or through analytical modeling.

Simulation has been widely used for assembly system
design and performance analysis [11], and discrete event
simulation (DES) is a particularly popular technique because
of the discrete nature of assembly lines. DES has reportedly
been used in over 40% of research papers in the fields of
manufacturing and business and is appropriate for process
analysis, resource utilization, queuing, and other forms of
short-term analysis [12]. Smith provides a survey of DES in
manufacturing systems [11].

Previous work has demonstrated the importance of analyt-
ical models in throughput analysis [13]. Papadopoulos et al.
surveys Markov models of manufacturing systems including
two machine lines and numerical solutions for larger systems
[14]. This paper only addresses single- and two-band lines
that incorporate unreliable machines. With regard to serial
two-machine lines [15], existing work includes assessment
of analytical models for both synchronous [16], [17], [18],

[19] and asynchronous systems [16], [19], [20], [21]. (The
uptimes and downtimes of machines are geometrically dis-
tributed in synchronized models and exponentially distributed
in asynchronized models.) Other types of distributions, such
as Erlang and phase-type, have also been analyzed in prior
works [22], [23]; here, we consider only the geometric and
exponential families of uptimes and downtimes. Given that
existing methods incorporate two-machine lines, we augment
the Markov chain state representation in order to model
two-band lines; we also differentiate between methods for
conventional and flexible layouts.

III. PROBLEM FORMULATION

A. Assembly Layout

Fig. 1: The conventional layout consists of a linear line. If any
station experiences slowdowns, the entire line pauses for the
station to catch up.

Fig. 2: The flexible layout uses mobile platforms to transport
cars. If a platform experiences slowdowns, the platform moves
to a parking station to avoid blocking other cars.

In a conventional layout (CL), a band consists of a series
of n work stations M1, ...,Mn, where each work station Mi

is assigned a fixed set of agents for the entire duration of the
production process. In a flexible layout (FL), a band consists
of main stations and parking stations, with each station able
to include at most one mobile platform. Each mobile platform
Mi, i ∈ {1...n} is assigned a set of agents when car c ∈ C
is loaded onto that platform (n represents the total number of
mobile platforms in the system). If a platform experiences a
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slowdown, the platform moves to an adjacent parking station if
one is available. If there are multiple adjacent parking stations,
it moves to one with the least adjacent working stations.
For example, in Figure 2, M5 moves to parking station 4 if
both parking stations 1 and 4 are available. In this work, we
consider 1, 385 car variants, which is the cardinality of C. We
anonymize the agents in both layouts, and assume the agents
can perform all assigned tasks. As shown in Figures 1 and 2,
we consider a linear layout for CL and a sideways U-shaped
band for FL; however, FL can take any shape, depending upon
the designer’s optimization criteria. In our case, FL benefits
from a sideways U-shaped band, because mobile platforms
that finish unloading a car have a shorter distance to travel to
the beginning of the line, and parking stations are accessible
via multiple stations along the line.

B. Assembly Task

The assembly process for a car c is divided into tasks Wc,
where each task w ∈ Wc is defined by the number of agents
nw required to perform it, and a fixed duration, dw. In CL,
each task w is also assigned to a specific workstation. We use
simple temporal constraints (STC) to encode ordering con-
straints between tasks. A STC has the form αij ≤ tj−ti ≤ βij
for two time points, tj and ti, and a lower and upper bound
[αij , βij ] [24]. Let w1 and w2 be any two tasks with start times
stw1

and stw2
and end times etw1

and etw2
, respectively. In

our case, w2 can be constrained by w1 as follows:
1) Delay constraint αw1w2 ≤ stw2 − etw1 ≤ ∞: w2 can

only begin execution after w1 has been completed for at least
some time αw1w2

. (There is no upper bound.)
2) Immediate constraint 0 ≤ stw2

− etw1
≤ 0: w2 must be

executed immediately after completion of w1.
3) Simultaneous constraint 0 ≤ stw2

−stw1
≤ 0: Execution

of w2 begins at the same time as w1.

C. Assembly Error

Any disruption along the line that affects the production
process is considered an error. In CL, we do not differentiate
between types of errors (such as machine breakdown vs.
logistical delays), and errors have the same effect (stopping the
band). In FL, we model five different types of errors defined
by the following properties:

1) Requires Immediate Parking: : The platform must park
immediately and wait at the parking station until the given
error is resolved. If no parking station is available, the platform
remains in the error state.

2) Requires Agent to Resolve: : One of the agents on the
platform is assigned to resolve the given error (for example,
tool wear or machine breakdown) and cannot perform tasks
for that errors duration.

3) Increases Makespan: : The given error increases the
makespan of the car due to any rework that must be performed.

4) Blocks the Current Task: : The current task cannot be
worked on until the given error (for example, a logistical delay)
is resolved. Any progress on the task is lost. Table I depicts
the error types and their associated properties.

Requires
Immediate

Parking

Requires
Agent

to Resolve

Increase
Makespan

Blocks the
Current Task

Type 1 • •
Type 2 •
Type 3 • •
Type 4 • •
Type 5 •

TABLE I: Properties of the different error types modeled in
our simulation.

D. Definitions

1) Throughput: We evaluate the layouts by the through-
put (TP ), or production rate, which is the number of cars
produced per hour. The line efficiency, (E), refers to the
proportion of time during which a line is operational. Our
interest is in steady-state performance, or the average long-
term throughput of the production line. Let λs be the number
of units produced per hour on a line without errors, the
throughput is determined by TP = λs × E.

2) Failures and Repairs: We use machines as a general
term to refer to stations in CL or platforms in FL. For a
line with n machines, each machine Mi for i ∈ n has a pi
probability of breaking down per cycle. Once that machine is
down, the average number of cycles needed to repair machine
Mi is represented as the mean time to repair (MTTRi), or
mean downtime. The average time for machine Mi to fail is
represented as the mean time to failure (MTTFi), or mean
uptime. Let ri be the probability that machine Mi is repaired
during a cycle given that it is down at the beginning of that
cycle:

ri =
1

MTTRi
, pi =

1

MTTFi
(1)

Here, the uptime and downtime of machines follow geometric
distributions. This is a discrete model because the time unit is
discretized into cycles. For a continuous model, machines up-
and downtimes follow exponential distributions. Let λi and
µi represent the failure and repair rates of the ith machine.
Equation 1 is as follows:

µi =
1

MTTRi
, λi =

1

MTTFi
(2)

This is equivalent to modeling each machine as a M/M/1/k
queue, where queue size, k, is one, and the errors occur
according to a Poisson process (i.e., exponentially distributed
inter-arrival times with parameter λ). The proportion of time
that machine i spends resolving errors, ρi, is λi/(λi + µi).
The efficiency of machine i, ηi, is given by the following:

ηi = 1− ρi = 1− λi
λi + µi

=
µi

λi + µi
(3)

3) Failure Mode: Failures can be divided into two cate-
gories: time-dependent failures (TDF) or operation-dependent
failures (ODF). TDF can occur at any time, while ODF only
occurs while a machine is operating. Some examples of TDF
include power line or transfer mechanism failures, while ODF
are task-related and include equipment breakdown or logistical
delays. We only consider single-station failures, and as a result,
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the failure and repair of each machine is independent of other
machines. For our analytical models, CL is modeled with ODF,
but FL is modeled with TDF in order to account for mobile
platform failures.

4) Two-Machine vs. Two-Band Lines: A two-machine line
consists of machine M1 connected to a buffer B1, which is in
turn connected to a second machine, M2. M1 is known as the
“upstream machine, and M2 the “downstream machine. A two-
band line consists of a series of machines, M1, ...,Mn, con-
nected to a buffer B1, which is in turn connected to a second
series of machines, Mn+1, ...,Mn+m. In this case, M1, ...,Mn

is known as the “upstream band and Mn+1, ...,Mn+m the
“downstream band. In our case, the two bands include the
same number of machines (n = m). Figures 3 and 4 depict
the two-machine and two-band lines, respectively.

M1 B1 M2

Fig. 3: Two-Machine Line

M1 ... Mn B1 Mn+1 ... M2n

Fig. 4: Two-Band Line

The buffer serves as a storage queue and decouples the
machines or bands. A machine is considered starved if the
upstream buffer is empty, and blocked if the downstream buffer
is full; a machine becomes idle when either starved or blocked.
We do not incorporate deliberate idleness into our models, so
a given machine is always processing a part if it is able to.
We consider a saturated model, wherein the first machine is
never starved and the last machine is never blocked; a non-
saturated model is used when the input and output are modeled
by stochastic processes. For both the simulation and analytical
models, we assume that the buffer has no transition time (i.e.,
a part that enters the buffer can immediately be loaded onto
the next machine).

E. Buffer Properties [25]

1) Monotonicity: The production rate monotonically in-
creases as a function of the buffer capacities. More formally,
consider two lines, L1 and L2, with buffer capacities z1 and
z2. If z1 ≤ z2, then TP (L1) ≤ TP (L2), where TP (Li) is
the throughput of line Li.

2) Infinite buffer size: For a line with infinite buffer capac-
ity, the throughput is bounded by the smallest throughput of
an individual machine along that line. Consider a two-machine
line, and let TP1 and TP2 be the isolated throughput of
machines M1 and M2. The throughput (TP) of the line is given
by min(TP1, TP2); it follows that TP ≤ min(TP1, TP2) for
any buffer size.

3) Reversibility: If a line with n machines is reversed, such
that machine Mi and buffer Bi in the original line are the same
as machine Mn−i+1 and buffer Bn−i+1 in the reversed line,
then the two lines have the same throughput.

F. Assumptions

We summarize our main assumptions as follows:

• We consider homogeneous and interchangeable agents
and therefore do not take their skill sets into account for
task assignment.

• The service, failure, and repair processes of each machine
are independent of other machines; all machines are
identical and have the same service, failure, and repair
probabilities and rates.

• Based on the data collected, CL is modeled with ODF,
and FL is modeled with TDF.

• The buffer is finite with capacity Z and does not incur
movement cost (i.e., the transition time is zero).

• The first machine is never starved and the last machine
is never blocked. A machine is always processing a part
if it is not in an error or idle state.

IV. SIMULATION

A. Single Band

The simulation is composed of the pre-processor, scheduler,
and simulator. To simplify task scheduling, the pre-processor
eliminates simultaneous and immediate constraints (SC and
IC, respectively). A pair of tasks with SC, w1 and w2, is
merged into a single task, w1,2, where dw1,2

= max(dw1
, dw2

)
and nw1,2 = nw1 + nw2 . The duration of this new task is the
maximum of the two original tasks’ duration, and the number
of agents required for the new task is the sum of the number of
agents of the original two tasks. With IC, the new task w1,2 has
a duration of dw1,2

= dw1
+ dw2

and nw1,2
= max(nw1

, nw2
)

number of agents. Note that in CL, tasks with IC can only be
merged if both tasks are assigned at the same station, whereas
FL does not have this restriction. When chains of SC and
IC exist for a given set of tasks, tasks with SC are merged
prior to those with IC. Task merging results in suboptimal
schedules when nw1

6= nw2
for tasks with IC and when

abs(dw1 − dw2) > ε for tasks with SC; however, such cases
are rare in our data, justifying the simplification. The pre-
processors output is a new set of tasks wherein the only type
of temporal constraint that exists between tasks is the delay
constraint.

In CL, the scheduler assigns tasks for all cars on the band in
each cycle; in FL, the scheduler assigns all tasks for a single
car upon that vehicles entry onto the band. Given a set of tasks,
the scheduler uses a greedy strategy to output a satisficing
schedule. The scheduler first assigns tasks without delay
constraints to available agents, then assigns the remaining
tasks when their constraints are satisfied. In FL, when a mobile
platform either blocks the current task or encounters an error
that an agent is required to resolve (i.e., error types 1, 3, 4, and
5), the tasks that have yet to be executed are rescheduled. The
simulator emulates the production process by keeping track of
the state of the band and the cars; it uses a priority queue to
process events such as assembly errors, task completion, and
the movement of cars along the line.
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B. Sensitivity of Flexible Layout to Band Efficiency

When a new line is introduced, it is possible that the
predicted times necessary to complete each job within the as-
sembly process are over-optimistic. This optimism could arise,
for example, from unforeseen periodic delays that workers
may have to address. Further, the workers may simply not
have enough experience on the new line to be able to act as
quickly as initially anticipated.

Before investing in a new assembly line, it is important to
understand the operational parameters required to make that
investment profitable. In order to investigate these parameters,
we ran the simulation with additional errors, varying the error
rate λ and machine efficiency η. Rearranging Equation 2, given
λ and η, the repair rate µ is given by µ = ηλ

1−η .

C. Two Band

To extend single-band simulation to systems involving two
bands, we use a client-server model to pass messages between
the upstream band, downstream band, and buffer. The bands
and buffer are clients that send messages to the server, which
then relays these messages to their intended recipients. The
upstream and downstream bands only communicate with the
buffer, and the buffer communicates with both bands.

Fig. 5: A client-server model designed to relay messages
during the process of loading and unloading cars along an
assembly line.

When the upstream band is ready to unload a car (i.e., the
car is ready to exit the band), the band sends a message to
the buffer (1). If the buffer is not currently full, it replies to
the band immediately and increases its inventory level by one
(2). However, if the buffer is full, it waits until a spot is open
before replying. In CL, the upstream band is blocked until the
buffer replies; in FL, the upstream band may be able to load
a new car by moving cars into parking stations, and the band
only becomes blocked when all main and parking stations are
occupied.

On the other hand, when the downstream band is ready to
load a car, it sends a message to the buffer (3). The buffer
immediately replies with a message indicating whether it’s
currently empty(4). If the buffer unloads a car, the downstream
band replies with an acknowledgement (5) but can continue
to the next cycle if the buffer is empty. The downstream band
is only identified as starved when it is entirely empty.
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Fig. 6: A comparison of the CL and FL simulation results. For
factory-observed error probability (i.e., an error multiple of 1),
FL achieved an average speed improvement of 26% over CL.

D. Data Set

Task and error data used in this work were collected from
an operational automotive assembly line in the FA stage. The
cars produced along this line are highly customizable, which
means that tasks often vary between cars. We used a black-
box tool that generates sets of tasks and constraints while
taking the frequencies of different customization into account.
The tool takes 8 minutes to generate tasks for a single car
in a virtual machine on a commercial 2.3GHz Intel Core i5
processor with 8GB of RAM. To speed up the simulation, we
uniformly sampled from a pre-generated pool of 1, 385 car
variants.

We also used a black-box tool from the automotive plant
that samples the line’s typical error types and duration for both
CL and FL. The errors used in the simulation were uniformly
sampled from a pre-generated pool of 1, 194 errors for each
layout.

For each cycle, each station that has tasks in progress (in
CL) or is occupied by a platform (in FL), has a p probability of
experiencing an error. The parameter p is chosen such that the
expected number of errors is equal to the number of errors
observed along the operational assembly line on which our
data set was based. We also evaluated layouts with different
multiples of p, or error multiples, φ ∈ {0, 0.25, 0.5, 1, 2, 4, 8},
in the simulation. Each simulation was run until 700 cars were
produced, representing the daily production rate of the factory
on which our model was based. We ran 30 simulations for
each error multiple φ. In both layouts, we used a cycle time
of 100 seconds. The simulation was implemented in the Java
programming language.

E. Results

1) Single Band: Figure 6 depicts average throughput as a
function of error multiple φ, or multiples of factory-observed
error probability p. When the line had no errors, FL had a
slightly higher throughput than CL due to the lack of spatial
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constraints in FL. Since tasks in FL are performed on a
single mobile platform, task execution can begin immediately
after a given tasks temporal constraints are satisfied. In CL,
tasks may be assigned to different stations, and task execution
cannot begin until the car is at a particular station. The
advantage of FL is more apparent as φ increases. Recall that
the band stops when an error occurs in CL, while mobile
platforms can move to a parking station in FL, allowing the
other platforms to continue along the band. The increase in
throughput improvement as a function of φ indicates that
parking stations can help to alleviate error-related slowdown.

Fig. 7: The average performance gain of FL as a function of
efficiency and the number of delays per minute. FL has an
advantage over CL if efficiency is at least 94% or if delays
resolve promptly.

In order to analyze the sensitivity of FL’s performance gain
to additional inefficiencies, we simulated the layouts with
factory-observed error frequency (i.e., φ = 1) and included
additional errors to FL. (These additional errors represent
unforeseen delays that could follow from the adoption of FL.)
Figure 7 depicts the average performance gain of FL as a
function of error rate λ and machine efficiency η. The repair
rate µ is determined by η and λ, as shown in Equation 3. FL
performs better than CL if machine efficiency is at least 94%;
with lower efficiency, FL can still perform better if errors are
frequent but of short duration. FL’s advantage is given by the
following:

Advantage =
TPFL − TPCL

TPCL

TPL is the throughput of layout L.
2) Two Band: Figures 8 and 9 depict the throughput of

the layouts and FL’s advantage over CL, respectively, as a
function of error multiple φ and buffer size. (Note that φ is
the same for the upstream and downstream bands.) In Figure 8,
the throughput of both layouts generally increases as a function
of buffer size (property III-E1); it does not monotonically
increase due to noise from the simulation of a stochastic
environment. In all cases, the maximum throughput is bounded
by the throughput of the single-band layout with the same error
multiple (property III-E2).
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Fig. 8: Throughput of the two-band CL (top) and FL (bottom)
with equal band failure probability. The buffer improves the
throughput of both layouts, but this improvement is bounded
and does not overcome the deficit resulting from greater error
frequency.

Figure 9 indicates that FL’s advantage is greatest when φ
is high and the buffer size is small. This advantage decreases
as buffer size increases because the buffer helps to alleviate
error propagation and has a greater effect on a line that is itself
more affected by errors. With regard to factory-observed error
probability (i.e., φ = 1), the two-band FL has a 36% advantage
over CL with a buffer size of 10. On a line with no errors, FL’s
advantage remains constant as buffer size varies; in this case,
the throughput converged to its upper bound, and increasing
buffer size does not improve the throughput of either layout.

Figure 10 depicts the throughput of the line when error
multiples differ between the upstream and downstream bands,
with the buffer size fixed to five. One finding of note is the
presence of the reversibility property (III-E3): a line where
the upstream and downstream bands have failure probabilities
of p1 and p2 has the same throughput as a line where the
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Fig. 9: The advantage of FL over the CL as a function of buffer
size and error frequency. FL’s advantage is greatest with higher
error multiples and smaller buffer sizes.

Fig. 10: The throughput of CL and FL with a buffer capacity
of five. Both layouts exhibit the reversibility property.

upstream and downstream bands have failure probabilities of
p2 and p1. We also observe that the throughput is higher for
a line with error multiples of 2 for both bands than a line
with no errors for one band and an error multiple of 4 for the
other. This adheres to property III-E2, in that the throughput
of the entire line is bounded by the machine with the worst
throughput.

V. ANALYTICAL MODELS

Simulation is a useful tool for assembly line analysis but
has several drawbacks, including a lengthy implementation
time, difficult debugging due to the stochastic environment,
and potentially high computational costs. In this section, we
present analytical models that predict the throughput of CL
and FL.

The main differences between the analytical models for the
two layouts are that CL is modeled with operation-dependent
failures (ODF) while FL is modeled with time-dependent

failures (TDF), as well as the assumption that FL is operational
when the number of machines in error is less than or equal to
the number of parking stations. This assumption overestimates
throughput because it ignores the loss in time resulting from
cars transferring to parking stations. A more-accurate model
would include the specific stations in error and the occupancy
of the parking stations into the state space; however, this would
also result in a significantly larger, intractable state space.

A. Single Band

Single Band

Conventional (ODF)

Discrete
Buzacott[26],
Markov Chain

Continuous
Birth Death

Process

Flexible (TDF)

Discrete
Markov Chain

Continuous
Birth Death

Process

Fig. 11: Overview of Single-Band Analytical Models

Prior work in this area includes Buzacott’s analysis of a
line with ODF [26]. Buzacott’s formula assumes that only
one machine can be down at any time. For TDF, Buzacott
considered the system analogous to a line of independent ma-
chines connected in series [27]. However, we do not evaluate
Buzacott’s TDF model because it is not straightforward how
to adopt the formula to account for parking stations. In order
to model failures involving multiple machines, we present the
Markov chain and birth-death process models. These models
handle multiple machine failures by using the number of
machines in error as the state representation.

S0 S1 S2
... Sn−1 Sn

Fig. 12: Markov Chain for CL

1) Markov Chain: This is a discrete Markov chain model
with geometric uptimes and downtimes. In the ODF case, the
state of the Markov chain is an integer-valued random variable
that represents the number of machines in error during a given
cycle. We use Si to indicate a state with i machines in error.
The set of possible states is S = {S0, S1, S2, ..., Sn} for a
line with n machines. Figure 12 depicts the Markov chain
with arrows indicating a non-zero probability of transition. At
the start of a cycle (represented by S0), every machine has
a p probability of failing; the state transitions from S0 to Si
if i machines fail. In the case of ODF, machines that did not
fail become idle after completing tasks in the current cycle;
therefore, Si cannot transition to states Sj where j > i. For
the set of machines in error, each machine has an independent
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probability of repair, r, per cycle; thus, Si is connected to
every state Sj where j < i.

We use the binomial distribution to compute transition
probabilities. Let T be the transition matrix and T [i][j] be the
transition probability from Si to Sj . The following equations
define all non-zero probabilities in T :

T [0][j] =

(
n

j

)
pj(1− p)n−j ∀ j ∈ {1 . . . n}

T [i][j] =

(
i

i− j

)
ri−j(1− r)j if i > j

T [0][0] = (1− p)n

T [i][i] = (1− r)i ∀ i ∈ {1 . . . n} (4)

The Markov chain described above is ergodic, and there exists
a unique positive steady-state vector π for ergodic finite-state
Markov chains that is a left eigenvector of T corresponding
to an eigenvalue λ = 1 [28].

T = UΛU−1 (5)
πT = λπ λ = 1 (6)

Equation 5 shows the eigendecomposition of T , where the
columns of U are left eigenvectors of T and Λ is a diagonal
matrix of eigenvalues. Equation 6 shows that π is the steady
state vector. Let π[0] be the first element of π corresponding
to the steady state probability of S0. The throughput of CL is
calculated by multiplying π[0] by λs, the service rate.

TPCL = λs × π[0] (7)

In the TDF case, the Markov chain becomes a fully-
connected graph. Given that idle machines can fail, non-zero
probabilities exist for transitioning from state Si to states with
more than i machine failures. The transition matrix T for a
n-machine line is given as follows:

T [0][0] = (1− p)n (8)
T [n][n] = (1− r)n (9)

T [0][j] =

(
n

j

)
pj(1− p)n−j if 0 < j ≤ n (10)

T [n][j] =

(
n

n− j

)
rn−j(1− r)j if 0 ≤ j < n (11)

T [i][j] =

Nij
r∑

nr=0

(
Nr
nr

)
rnr (1− r)Nr−nr

(
n− i

j − i+ nr

)
pj−i+nr (1− p)n−j−nr

if 0 < i < j, N ij
r = min(i, n− j) (12)

T [i][j] =

Nij
p∑

np=0

(
n− i
np

)
pnp(1− p)n−i−np

(
i

i− j + np

)
ri−j+np(1− r)j−np

if n > i > j, N ij
p = min(j, n− i) (13)

T [i][j] =

Ne∑
ne=0

(
n− i
ne

)
pne(1− p)n−i−ne

(
i

ne

)
rne(1− r)i−ne

if i = j, N i
e = min(i, n− i) (14)

Equations 8 and 9 represent the probabilities that no ma-
chines failed or were repaired, respectively. Equation 10 shows
transitions from zero machine errors to j machines with errors.
Equation 11 depicts transitions during which n− j machines
were repaired. Equation 12 shows transitions from states with
fewer machine failures to states with more machine failures.
N ij
r is the maximum number of machines that can be repaired

while transitioning from Si to Sj . Equation 12 sums all
possible numbers of repaired machines that can still transition
to a state where j machines are in error. Equations 13 and
14 are similar to Equation 12, but are for transitions from a
state with more machine failures to a state with fewer machine
failures and self-transitions, respectively.

The steady state vector π is calculated via Equations 5 and
6, and the throughput is given by the following:

TPFL = λs ×
5∑
i=0

π[i] (15)

∑5
i=0 π[i] is the proportion of time during which a line with

five parking stations is operational.
2) Birth-Death Process: The birth-death process is a con-

tinuous model wherein uptimes and downtimes follow expo-
nential distributions. It is a special type of Markov process
wherein each state has two transitions: birth and death. A birth
transition increases the state by one, while a death transition
decreases the state by one. Figure 13 depicts the embedded
Markov chain of our birth-death model.

Machine failures are treated as independent Poisson pro-
cesses, each with rate λ 1. When there are n machines, the
combined Poisson process of all machines has a rate of nλ
[28]. Therefore, for any state Si, the failure of n− i machines
is modeled by n−i independent Poisson processes, which can
be considered a single Poisson process with rate of (n− i)λ.
Similarly, the repair of i machines in state Si is modeled by
a single Poisson process with rate iµ.

S0 S1 S2
... Sn−1 Sn

nλ (n− 1)λ

2µµ

λ

nµ

Fig. 13: Birth-Death Process

Let π[i] be the time-average fraction of time spent in state
Si. Since the number of transitions from state Si to state Si+1

is within 1 of the number of transitions from state Si+1 to
state Si, the following relationship exists: [28]

π[i](n− i)λ = π[i+ 1](i+ 1)µ (16)

Iteratively applying Equation 16 yields the following:

π[i] = π[0]
n!

(n− i)!i!
(
λ

µ
)i (17)

1A Poisson process models the times at which failures occur, and the
intervals between failures are exponentially distributed with rate λ [28].
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Since
∑n
i=0 π[i] = 1, we substitute 17 into the sum as follows:

π[0] + π[0]

n∑
i=1

n!

(n− i)!i!
(
λ

µ
)i = 1

⇒π[0](1 +

n∑
i=1

n!

(n− i)!i!
(
λ

µ
)i) = 1

⇒π[0] =
1

1 +
∑n
i=1

n!
(n−i)!i! (

λ
µ )i

(18)

Given the steady state vector π, we use the same formulas as
Markov chain to compute the throughput of CL and FL which
is given by Equations 7 and 15 respectively.

B. Two Band

Two Band

Conventional (ODF)

Markov Chain

Flexible (TDF)

Markov Process

Fig. 14: An overview of two-band analytical models

The two-band Markov chain and Markov process are ex-
tensions of the single-band models. Instead of using the state
representation Sx, where x represents the number of machines
in error, the state is represented by the tuple (Su, Sd, z),
where Su and Sd represent the states of the upstream and
downstream bands and z is the buffer inventory level. In prior
work involving two-machine lines, Su and Sd have been binary
(up or down) [17]; in order to extend the representation to two-
band lines, we augment the representation such that Su and Sd
represent the number of machines in error and take on values
from 0 to n, where n is the number of machines in each band.
In this section, we refer to the upstream band as Mu and the
downstream band as Md.

1) Markov Chain: Similar to the single-band Markov chain,
we first derive the transition matrix T to compute the steady
state vector π. T is based on the single-band transition
matrices Tu and Td for the upstream and downstream bands,
as given by Equation 4. We assume that the buffer level only
changes if either Mu cannot output a finished part but Md can
process a part or Mu can output a finished part but Md cannot
process a part.

For buffer inventory level i ∈ {1 . . . Z − 1}, where Mu

is not blocked and Md is not starved, the transitions from
(Su1 , Sd1 , z) to (Su2 , Sd2 , z) are the products of individual
band transitions since the two bands are independent. Z is the
buffer’s maximum capacity.

T [Su1
, Sd1 , i][Su2

, Sd2 , j] =


Tu[Su1

][Su2
]× Td[Sd1 ][Sd2 ]

if i = j

0 otherwise

(19)

If the buffer is empty and Mu is down, Md is starved. Let
Ω represent the operational states, and Φ the failure states. For
CL, Ω = {S0}, Φ = {S1, ..., Sn}; for FL with five parking

stations, Ω = {S0, ..., S5}, Φ = {S6, ..., Sn}. CL assumes
ODF, so Md cannot fail when idle; FL assumes TDF, so Md

can still transition to any other state when idle.

T [ω1, ω2, 1][φ, ω3, 0] = Tu[ω1][φ]× Td[ω2][ω3]

∀ ω1, ω2, ω3 ∈ Ω, φ ∈ Φ (20)

Equation 20 shows the transitions where Md becomes idle due
to Mu being down and the buffer being empty.

T [φ1, ω, 0][φ2, ω, 0] = Tu[φ1][φ2]

∀ φ1, φ2 ∈ Φ, ω ∈ Ω (21)
T [φ, ω, 0][ω, ω, 0] = Tu[φ][ω]

∀ φ ∈ Φ, ω ∈ Ω (22)

Equation 21 depicts the transitions for ODF where Md stays
idle because Mu remains in failure states. The transition prob-
ability only depends upon Tu because Md is idle. Equation
22 shows the transition of Mu from a failure state to an
operational state. At the instant Mu becomes operational, Md

also becomes operational. The buffer level stays the same
because the part Mu put into the buffer was taken by Md.
The TDF counterpart is shown below:

T [φ1, Sd1 , 0][φ2, Sd2 , 0] = Tu[φ1][φ2]× Td[Sd1 ][Sd2 ]

∀ φ1, φ2 ∈ Φ, Sd1 , Sd2 ∈ Φ ∪ Ω (23)
T [φ, ω1, 0][ω2, ω3, 0] = Tu[φ][ω2]× Td[ω1][ω3]

∀ φ ∈ Φ, ω1, ω2, ω3 ∈ Ω (24)

Given that Md can fail when idle, all transitions must take Td
into account. Equation 23 is equivalent to Equation 21, and
Equation 24 is equivalent to Equation 22 in the case of TDF.

The other edge case occurs when Mu is blocked because
the buffer is full and Md is down, as shown in Equation 25.

T [ω1, ω2, Z − 1][ω3, φ, Z] = Tu[ω1][ω3]× Td[ω2][φ]

∀ ω1, ω2, ω3 ∈ Ω, φ ∈ Φ (25)

Equations 26 and 28 depict transitions wherein Mu stays
idle because Md remains in failure states for ODF and TDF,
respectively. Equations 27 and 29 show the transitions wherein
Md moves to an operational state and Mu is no longer blocked
for ODF and TDF, respectively.

T [ω, φ1, Z][ω, φ2, Z] = Td[φ1][φ2]

∀ ω ∈ Ω, φ1, φ2 ∈ Φ (26)
T [ω, φ, Z][ω, ω, Z] = Td[φ][ω]

∀ ω ∈ Ω, φ ∈ Φ (27)
T [Su1

, φ1, Z][Su2
, φ2, Z] = Tu[Su1

][Su2
]× Td[φ1][φ2]

∀ Su1
, Su2

∈ Φ ∪ Ω, φ1, φ2 ∈ Φ (28)
T [ω1, φ, Z][ω2, ω3, Z] = Tu[ω1][ω2]× Td[φ][ω3]

∀ ω1, ω2, ω3 ∈ Ω, φ ∈ Φ (29)
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Given T , the steady state vector is determined by Equation 6.
The throughput of both layouts is calculated as follows:

TP = λs

( ∑
ω∈Ω
Sd∈S

Z−1∑
z=0

π[ω, Sd, z] +
∑
ω1,ω2

∈Ω

π[ω1, ω2, Z]

)
(30)

= λs

( ∑
Su∈S
ω∈Ω

Z∑
z=1

π[Su, ω, z] +
∑
ω1,ω2

∈Ω

π[ω1, ω2, 0]

)
(31)

This is similar to the line efficiency equation developed by
Buzacott [17]. The sums in Equation 30 represent the propor-
tion of time during which the first band is up and not blocked.
This equates to the sums in Equation 31, which represent the
proportion of time the second band is up and not starved.

2) Markov Process: The two-band continuous model is no
longer a birth-death chain because there are more than just
birth and death transitions. In addition to transitions for car
failures and repairs, there are also transitions for buffer level
changes. We continue to model the uptimes and downtimes
with the exponential distribution. The buffer inventory in-
creases or decreases if the upstream band Mu or downstream
band Md produces a part; the time to produce a part is also
modeled by exponential random variables. We construct a
transition rate matrix Q such that Q[x][y] denotes the rate of
departing from state x and entering state y. Note that state x
or y is a tuple of the form (Su, Sd, z). One important property
of Q is that diagonal elements are defined such that the rows
sum to one. Q[x][x] = −Σy 6=xQ[x][y].

Algorithm 1: Create Transition Rate Matrix

Nu ← number of stations in upstream band
Nd ← number of stations in downstream band
Z ← buffer capacity
λs, λ, µ← service rate, failure rate, repair rate
Q← initialize matrix
for (i, j, z) where i ∈ {0..Nu}, j ∈ {0..Nd}, z ∈ {0..Z}

do
// machine repaired in Mu

if i > 0 then Q[i, j, z][i− 1, j, z] = i× µ
// machine fails in Mu

if i < Nu then Q[i, j, z][i+ 1, j, z] = (Nu − i)× λ
// machine repaired in Md

if j > 0 then Q[i, j, z][i, j − 1, z] = j × µ
// machine fails in Md

if j < Nd then Q[i, j, z][i, j + 1, z] = (Nd − j)× λ
// Mu produces a part
if z < Z and i ∈ operational states then
Q[i, j, z][i, j, z + 1] = λs
// Md produces a part
if z > 0 and j ∈ operational states then
Q[i, j, z][i, j, z − 1] = λs

To define the transition rates, we use idea that n independent
Poisson processes each with rate λ is equivalent to a single
Poisson process with rate n × λ [28]. For example, state
(2, Sd, z), which has two machines in failure in Mu, has a

transition rate of 2µ into state (1, Sd, z) where µ is the repair
rate of a single machine. Algorithm 1 defines the transition
rates for Q. Let πt[Su, Sd, z] be the probability of being
in state (Su, Sd, z) at time t. As t approaches infinity, π
approaches steady state and doesn’t change anymore; as a
result limt→∞π(t)Q = 0. We compute π by calculating the
left nullspace of the matrix Q [29]. The throughput is then
computed by Equations 30 and 31.

C. Parameter Estimation

The required parameters for the analytical models include
the service rate, λs; failure probability, p; failure rate, λ; repair
probability, r; and repair rate, µ for both layouts. We use the
hat symbol ∧ to represent the estimated values.

Service Two Band Line Failure Repair
λ̂s p̂ λ̂ r̂ µ̂

unit/hour prob./cycle unit/min. prob./cycle unit/min.

CL 29.63 9.43E-03 1.57E-02 0.404 0.243
FL 31.14 1.47E-02 2.44E-02 0.383 0.230

TABLE II: Estimated parameters

1) Service: We assume that the service times follow an
exponential distribution with parameter λs, which is estimated
by considering the throughput of the line when no errors
are present. The units are measured in the number of cars
produced per hour.

2) Failure: Based on collected data, a car has a 0.132
probability of experiencing an error while on the band. In order
to determine the probability of failure per cycle p̂, 0.132 is
divided by the number of stations2. To calculate λ̂, the number
of failures per minute, p̂ is multiplied by the cycle time (1.67
minutes).

3) Repair: The repair time is modeled by either a geometric
or exponential random variable. The parameters to estimate
for the geometric and exponential distributions are r̂ and µ̂
respectively. The maximum likelihood estimator (MLE) for
both distributions is computed by n/

∑n
i xi where n is the

total number of samples and xi is the i’th repair time. To
compute r̂, the repair times are first converted to units of cars
repaired per cycle. For µ̂, the repair times are measured in
units of cars repaired per minute.

D. Results

We use the standard error σpred and Pearson’s correlation
P-ρ to evaluate the analytical models. The standard error
measures how far off the predicted throughput is compared
to the simulation and is computed by

σpred =

√∑N
i (predi − simi)2

N
(32)

where predi and simi are the i’th sample of predicted and
simulation throughput, and N is the total number of samples.
Pearson’s correlation measures the linear relationship between

2In our simulation, CL has 14 stations, while FL has 9 main stations and
5 parking stations.
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Single Band Two Band
Markov
Chain Birth-Death Buzacott Markov

Chain
Markov
Process

σpred
0.971 3.213 1.373 0.958 4.125
1.579 1.581 - 2.861 3.590

P-ρ 0.991 0.994 0.993 0.987‡ 0.983
0.840 0.840 - 0.867‡ 0.852

TABLE III: Performance of analytical models in terms of the
standard error and correlation of the predicted and simulation
throughput. For each band type and model, the results for CL
are reported on top and FL on bottom. The best model is
highlighted in bold, and the superscripts † / ‡ denote statisti-
cally significant improvement of the best model compared to
other models of the same category at 95% / 99% confidence
intervals.

the predicted and simulation throughput. The performance of
the analytical models are reported in Table III.

The Markov chain models perform the best when using
standard error as the evaluation metric. An interesting obser-
vation is that the single-band birth-death model for the flexible
layout (FL) has similar predictions as the Markov chain model,
with the standard errors differing by only 0.02. But the birth-
death model has the highest error on the conventional layout
(CL). Figure 15 plots the predicted throughput of single-band
analytical models as a function of error multiples φ. From
Figure 15, the analytical models seem to underestimate the
throughput for CL and overestimate for FL. Recall that we
assume the FL is functional when the number of cars in
error is less than the number of parking stations, and we do
not account for the cost of transferring to parking stations.
Therefore, the FL models’ predictions are upper bounds of
the simulation throughput. Our second observation is that the
standard error is much higher for two-band models with the
exception of the Markov chain. Since the two-band models
are extensions of the single-band versions, the inaccuracies
from single-band are also observed and usually worsened in
the two-band case. However, the Markov chain model seems
to be robust for CL, achieving similar standard errors for both
single-band and two-band.

The Markov chain models have the highest Pearson’s cor-
relation except for the single-band CL. The birth-death model
has the highest correlation followed by Buzacott. However,
the correlation coefficients for the single-band models are
not statistically significant. On the other hand, the two-band
models have statistically significant differences for both 95%
and 99% confidence intervals. The results here align with
the standard error metric where Markov chain outperforms
Markov process. An interesting observation is that the FL
models are less correlated than the CL models, possibly due
to the difficulty in accounting for parking stations.

VI. DISCUSSION

There are two main limitations to our analyses: assembly
line abstractions and limited data collection. We used spe-
cific tasks and temporal constraints in our simulation, but
abstracted away other details, such as equipment usage and
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Fig. 15: Throughput predictions of single-band analytical
models (CL top, FL bottom). For CL, Markov chain has
the closest predictions to the simulation throughput. For FL,
Markov chain and birth-death have similar predictions.

worker specialization. We assumed that each station had the
equipment necessary for completing the tasks assigned to it;
we also anonymized workers and assumed that they all were
able to complete their assigned tasks. Our other limitation was
that the simulation did not account for all possible disruptions
along the band; for example, we only considered single-station
failures rather than those that could involve multiple stations
simultaneously.

VII. CONCLUSION & FUTURE WORK

The automotive assembly industry’s transition from mass
production to mass customization is generating interest in
flexible assembly lines. In this work, we proposed a flexible
assembly line layout (FL) that addresses a system’s ability to
handle disruptions. FL incorporates mobile platforms in order
to transport cars along the band, and allows these platforms
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to move off of the line when disruptions occur. Using data on
assembly tasks and disruptions collected from an automotive
assembly line, we used DES to simulate a segment of the final
stage of automotive assembly; the results indicate 26% and
36% increases in throughput by adopting FL in single-band
and two-band systems, respectively. Furthermore, we analyzed
the performance of FL when not operating at full capacity due
to inefficiencies arising when deploying new technology; our
findings show that FL has benefits over CL if FL’s efficiency
is at least 94%. Lastly, we presented analytical models and
showed that discrete models best approximate the simulation
throughput in most cases.

One direction for future work would be to address the
limitations discussed in Section VI. To incorporate equipment
data into the simulation, we would have to identify the
equipment used and determine whether it could be placed on
mobile platforms. Particularly large or expensive equipment
could be allocated to specific stations; however, similar to CL,
this would then create spacial constraints when use of that
equipment is required in order to complete assembly tasks. It
is thus important to expand the simulation with equipment data
to better compare the two layouts. We could also improve the
simulation by considering more types of errors. FL handles
single-station failures by moving the mobile platform with an
error into a parking station, but we did not consider multi-
station failures that would require the movement of mobile
platforms. Lastly, it is important to evaluate the performance
of both layouts on longer lines, as we only considered single-
and two-band models with a single buffer. For analytical
models, previous work used approximation methods such as
decomposition and aggregation [30], [31]. The simulation used
multiple processes in the two-band case, which is computa-
tionally expensive for longer lines; single-process frameworks
and approaches must also be investigated.
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